
timesheeting system architecture document

Thomas HOULLIER 〈pro@houllier.net〉

PRJ1-SAD1-v1.0 – February 10, 2024

Abstract

This is the system architecture document for the timesheeting project.
It proposes an architecture for a system in answer to the timesheeting
specification.

Revision History

Revision Date Author(s) Description

1.0 10FEB2024 TH Creation

Applicable documents

Index Title Reference Revision Author
AD1 timesheeting speci-

fication document
PRJ1-SPE1 v1.0 Thomas HOUL-

LIER

Document distribution

The present document is distributed under the Creative Commons Attribu-
tion 4.0 International license (https://creativecommons.org/licenses/by/
4.0/) by its author Thomas HOULLIER.

Every document release is signed with the author’s GPG key. A signature
file is provided along with the released document.

This document makes use of content from https://svgfind.com, under CC
licensing.

Contents

1 Introduction 2

2 Overall architecture 2

1 of 9

mailto:pro@houllier.net
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://svgfind.com
https://creativecommons.org/licenses/by/4.0/

3 System architecture diagram 2
3.1 Online subsystems . 3
3.2 Offline subsystems . 5

4 Requirements dispatch 5

Acronyms

CI Continuous integration
DB Database
GUI Graphical user interface
UI User interface

1 Introduction

timesheeting is a software project for creating, managing and reporting timesheet
data. The present document is in answer to the project’s user specification doc-
ument [AD1].

The document is organized as follows. We outline the overall architecture
briefly in Section 2. The system architecture is decomposed into subsystems
and presented in Section 3. Finally, the user requirements [AD1] are dispatched
to the subsystems in Section 4.

2 Overall architecture

The proposed timesheeting software is a desktop Graphical user interface (GUI)
linux application. The software embeds a Database (DB) for saving timesheet
data. It is configured through a user dotfile. It includes a utility to make a
backup of the database. It also includes timesheet data export capabilities to
an interoperable format. A state file is used for ergonomy. A logging system is
proposed.

The software is distributed through source releases. The associated documen-
tation is distributed via a documentation distribution channel. The software and
documentation releases are signed. We propose testing pipelines. The user can
file bug reports to an issue tracking system.

3 System architecture diagram

The proposed system is decomposed into the following subsystems. We distin-
guish between the subsystems active while the user interacts with the software
(online subsystems), and the auxiliary susbsystems (offline subsystems). We
outline the function of each subsystem and provide a diagram for illustration.

2 of 9

3.1 Online subsystems

The software comprises the following online subsystems,

• The GUI displays the User interface (UI) screens to the user. It allows
the user to input information into the software and interact.

• The Core logic handles the manipulation of timesheet data for presen-
tation to the user. It decouples the GUI subsystem from the rest of the
application.

• The Settings manager loads the user configuration file, and propagates
the settings to the application.

• The Exporter is in charge of generating the export file for timesheet data.

• The DB backend interacts with the DB. It decouples the database op-
eration from the rest of the application.

• The Backup manager creates and restores backup files for the current
application state.

• The Logger records the application logs.

Fig. 1 illustrates the interaction between these subsystems.
The data files involved in the operation of the software are,

• The User configuration file allows the user to configure the application.
This is a text file the user edits.

• The User state file records some of the application states for ergonomy
and interaction. It does not contain any critical data such as timesheet
data.

• The Logs record application events for debugging purposes.

• The Database allows the application to store and retrieve critical data.
It is persistent.

• The Export file is a user-readable file generated on-demand from the
timesheet data.

• The Backup is an archive recording the critical application data, for sav-
ing the data elsewhere, or transfering between systems. It allows restoring
the database.

3 of 9

Core Logic

GUI

User

Database

User
configuration

file

Settings manager

Inputs Displays

Edits User
state
file

Database
backend

Exporter

Backup

Export
file

Logger

Logs

Loads Restores Saves

Records

Exports

Restores

Saves

Stores

Queries

Backup
manager

Figure 1: System architecture diagram.

4 of 9

3.2 Offline subsystems

The software comprises the following offline subsystems,

• The Versioning system tracks the state of both the software source and
documentation source.

• The Software distribution system manages the release of software
source to the user.

• The Build system generates a binary from the software source.

• The Automated testing comprises the tests that are run automatically
for every software release. It is part of the Continuous integration (CI)
pipeline.

• The Manual testing comprises the tests performed by the Tester, man-
ually, for every software release. It is part of the tester pipeline.

• The Documentation generator generates the documentation releases
from the documentation source.

• The Documentation distribution manages the release of documenta-
tion reports.

• The Signature system authenticates the released source and released
documentation as coming from the author.

• The Issue tracking allows the user to file bug reports.

Fig. 2 illustrates the interaction between these subsystems.
There are three build pipelines in parallel,

• TheUser pipeline: the user receives the released source, and uses the build
system to generate a binary. The user then uses the binary.

• The CI pipeline: The software source for every version are automatically
sent to a CI system, where the source are built into a binary. Assuming
the build was successful, automated tests are then run on the binary. The
results are reported publicly in the software distribution system.

• The Tester pipeline: The software source is built by the tester using the
build system. The binary is then tested against a set of manual cases.

4 Requirements dispatch

We assign responsibility for the requirements in [AD1] to the various subsystems
described in the system architecture (Section 3). This dispatch is presented in
Tab. 1. Some requirements are attributed to aGeneral system, when they cannot
be attributed to a single subsystem.

5 of 9

User Tester

Signature
system

Documentation

Bug reports

Issue tracking

Manual
testing

Automated
testing

Software
distribution

Build

Versioning

CI

Binary

Source

Released
source

Documentation
generator

Documentation
distribution

Figure 2: Offline subsystems diagram.

6 of 9

Table 1: Requirements responsibility dispatch to subsystems.

Req. ID Req. name Responsible subsystem
R-UHI-010 Adding hierarchy items GUI, Core logic
R-UHI-020 Removing hierarchy items GUI, Core logic
R-UHI-030 Editing hierarchy items GUI, Core logic
R-UHI-040 Restoring deleted hierarchy items GUI, Core logic
R-UHI-050 Project removal effect Core logic
R-UEI-010 Adding entries GUI, Core logic
R-UEI-020 Adding entries through stopwatch GUI, Core logic
R-UEI-030 Adding entries manually GUI, Core logic
R-UEI-040 Removing entries GUI, Core logic
R-UEI-050 Editing entries GUI, Core logic
R-UGL-010 UI screens breakdown GUI
R-DES-010 Daily entries GUI
R-DES-020 Day selection GUI
R-DES-025 Day selection format GUI
R-DES-030 Display entries of the day GUI
R-DES-040 Running daily total GUI
R-STP-010 Stopwatch in use GUI
R-STP-020 Running stopwatch time GUI
R-STP-030 Stopwatch only on current day Core logic
R-ENI-010 Entry metadata prefill GUI
R-ENI-020 Entry metadata suggestion GUI
R-ENI-030 Entry metadata hierarchy search GUI
R-ENI-040 Entry metadata hierarchy coherence Core logic
R-HIS-010 Hierarchy items GUI
R-HIS-020 Hierarchy items display GUI
R-GUI-010 Keyboard usage GUI
R-LDC-010 Entry identification DB backend
R-LDC-020 Entry metadata DB backend
R-LDC-030 Company identification DB backend
R-LDC-040 Company metadata DB backend
R-LDC-050 Project identification DB backend
R-LDC-060 Project metadata DB backend
R-LDC-070 Task identification DB backend
R-LDC-080 Task metadata DB backend
R-TIM-010 Time standard Core logic
R-TIM-020 Time reference Core logic
R-TIM-030 Time zones Core logic, Settings manager
R-TIM-040 Time resolution Core logic
R-SAV-010 Save DB backend
R-SAV-020 Transparent save DB backend
R-SAV-030 Timesheet save resolution DB backend

7 of 9

R-SAV-031 Hierarchy items save resolution DB backend
R-SAV-040 Save status GUI
R-SAV-050 Switch save profile Settings manager
R-SAV-060 Starting save profile Settings manager
R-BAK-010 Backup Backup manager
R-BAK-020 Backup restore Backup manager
R-BAK-030 Backup completeness Backup manager
R-BAK-040 Backup conciness Backup manager
R-BAK-050 Backup timestamp Backup manager
R-BAK-060 Backup naming GUI
R-BAK-070 Backup location GUI
R-DEX-010 Timesheet export Exporter
R-DEX-020 Export naming GUI
R-DEX-030 Export location GUI
R-DEX-040 Export tool screen GUI
R-DEX-050 Export time period GUI, Exporter
R-ACC-010 Single user Core logic
R-ACC-020 Synchronization across systems General
R-ACC-030 Company segregation Core logic
R-ACC-040 Data confidentiality DB backend
R-ACC-050 Offline operation Core logic
R-ENV-010 Target hardware General
R-ENV-020 Target OS General
R-ENV-030 Target OS version General
R-ENV-040 Target graphical environment GUI
R-PER-010 Memory footprint General
R-URE-010 Durations display format GUI
R-RPT-010 Project totals GUI
R-RPT-020 Project totals time period GUI
R-RWT-010 Weekly report GUI
R-RWT-020 Weekly report daily totals GUI
R-RWT-030 Weekly report weekly totals GUI
R-RWT-040 Weekly report running week GUI
R-RWT-050 Weekly report week selection GUI
R-RWT-070 Weekly report timesheet export Exporter
R-LOG-010 User data interaction logging Logger
R-LOG-020 Log file location Logger
R-LOG-030 Log depth Logger
R-LOG-040 Log cleanup Logger
R-LOG-050 Log cleanup schedule Logger
R-LOG-060 Log readability Logger
R-LOG-070 Log accessibility Logger
R-QUA-010 Version report GUI

8 of 9

R-QUA-020 Save data validation Core logic
R-QUA-030 Release signature Signature system
R-QUA-040 Single repository Versioning
R-TES-010 Automated build test Automated testing
R-DOC-010 Development documentation General
R-DOC-020 User manual General
R-DOC-030 Keyboard cheatsheet General
R-DOC-040 Keyboard cheatsheet conciness General
R-DOC-050 Software build instructions General
R-DOC-060 Documentation build instructions Documentation generator
R-DOC-070 Matrix of conformity General
R-DOC-080 Architecture and design document General
R-REL-010 Software version format General
R-REL-020 Release notes General
R-REL-030 Release notes granularity General
R-REL-040 Release notes publication Documentation distribution
R-REL-050 Documentation release Documentation distribution
R-REL-060 Build dependencies Build
R-DEP-010 Installation script Build
R-DEP-020 Uninstallation script Build
R-LIC-010 Source code license General
R-LIC-020 Documentation license General

9 of 9

	Introduction
	Overall architecture
	System architecture diagram
	Online subsystems
	Offline subsystems

	Requirements dispatch

